
C=> 

LU 

Office of Naval Research 

Contract N50RI-76   •  Task Order No. 1 • NR-078-Oil 

CO 
A  SHIELDED TWO-WIRE HYBRID  JUNCTION 

By 

Edgar W. Mai.hews, -Jr. 

March 10,1954 

3= 

Technical Report No. 183 

Cruft Laboratory 
Harvard University 

Cambridge, Massachusetts 



I 

.. 

'•••• 

& 

THIS REPORT HAS BEEN DELIMITED 

AND CLEARED FOR PUBLIC RELEASE 

UNDER DOD DIRECTIVE 5200,20 AND 

NO RESTRICTIONS ARE IMPOSED UPON 

ITS U8E AND DISCLOSURE, 

DISTRIBUTION STATEMENT A 

APPROVED FOR PUBLIC RELEASE; 

DISTRIBUTION UNLIMITED, 



r 
Office of Naval Research 

Contract N5-ori-76 

Task Order No.    1 

NR-078-011 

Technical Report 

on 

A Shielded Two-Wire Hybrid Junction 

by 

Edgar W.   Matthews, Jr. 

March 10,  1954 

The   research  reported in this document was   made possible 
through support extended Cruft Laboratory, Harvard University 
jointly by the Navy Department (Office of Naval Research), the 
Signal Corps of the U.   S.   Army, and the U.   S.   Air Force, under 
ONR Contract N5ori-76, T.  O.   1. 

Technical Report No.   183 

Cruft Laboratory 

Harvard Univei sity 

Cambridge, Massachusetts 

*S5^ 

• 



r 

t 

TR183 

A Shielded Two-Wire Hybrid Junction 

by 

Edgar W.  Matthews, Jr. 

Cruft Laboratory, Harvard University 

Cambridge, Massachusetts 

ABSTRACT 

This paper describes a shielded twc-wive hybrid junction and presents 
a theoretical analysis of its properties, with particular emphasis upon its 
use as the basic element of an impedance bridge,    In addition, the problem 
of definition and measurement of impedances on this type of line, with two 
propagating modes,   is   discussed;  and the line constants for the particular 
line configuration used are evaluated. 

I 

SHIELDED TWO-WIRE LINE THEORY 

A. Generalized Reflection Coefficients 

The conventional analysis of a two-wire line usually begino with the 

assumption that the currents in the two wires are exactly equal in amplitude 

and opposite in phase at any transverse plane.    In practice, however, this is 

seldom realized, especially when the line length is comparable to the wave- 

length of the applied voltage.    In any case, the actual currents can be sepa- 

rated into two components:balanced currents, which are exactly equal and 

opposite;   and unbalanced currents, which are equal and in the same direc- 

tion in both wires.    On open two-wire lines, balanced currents are true 

transmission-line-type currents, in that their associated electromagnetic 

fields cancel almost exactly at large distances from the wires, for line 

spacings which are a crnall fraction of a wavelength.    On the other hand, the 

fields from unbalanced currents reinforce each other, and thus produce a 

radiation of real power.    It is for this reason that two-wire transmission 

lines used at high frequencies are often shielded. 
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A shield around a two-wire line has little effect on the balanced 

currents, except to change their characteristic impedance; but it does 

eliminate the radiation of the unbalanced components by providing a return 

path for the currents so that they also behave like true transmission-line- 

type currents.    This situation is usually spoken of in terms of a transmission 

line which has two propagating "modes,"   balanced and unbalanced.    On a 

uniform, symmetric"! line composed of good conductors, these two modes can 

exist and propagate entirely independently, just as in the case of a waveguide 

operating at a frequency such that more than one mode can propagate.    Each 

mode cin be considered as existing on a separate line, with its own generator 

and load terminations.    The only  possible additional factor which must be 

taken into consideration is the coupling between modes at the generator and 

the load.    This can be accounted for in the separate-line model by representing 

both generator and load as two-terminal-pair networks, connected between 

the two lines.    In the scattering-representation matrix for these networks, 

the S,, and S?? factors are in the nature of self-reflection coefficients, while 

the S, ? and S,, factors represent coupling between modes, and can be consid- 

ered as mutual reflection coefficients.    Inasmuch as the two modes actually 

exist on the same line, this scattering matrix may be considered a type of 

generalized reflection-coefficient matrix, with elements PL_ andl\,TT to e BB UU 
represent the self-reflection of the balanced and unbalanced modes, respec- 

tively,  andP        and!-"' rT3 to represent the balanced reflection from an un- 

balanced incident wave, and vice versa, respectively.    If the component waves 

are normalized properly in terms 01 their characteristic impedances,!  _ 

= Pn_ because of reciprocity.    The need for such a generalized reflection 

coefficient matrix with at least three independent terms is obviously brought 

about by the coexistence of the two modes on a single transmission line. 

Coupling between the modes usually exists only because of some physical 

dissymmetry of the line or terminations.    If this can be avoided, the two modes 

can be treated entirely independently.    Systems with couplings between modes 

can rapidly become too complex for analysis; and because such couplings 

usually arise unintentionally, most of the following work will be done on the 

ideal assumption that none exists. However, after an analysis of the measure- 

ment problem concerning the component waves, a development of the gener- 

L 



r 
TR133 -3- 

alized reflection coefficient matrices for simple tee-and pi-terminating net- 

works will be given, to show how cross-coupling arises and may be treated. 

B.     Measurement of Component Waves 

Following the notation of Tomiyasu [l] , the potential of each of the two 

wires of a shielded two-wire line, with respect to the  shield, may be writtenas: 

-Ynx + 7_x +YrTx -"YTT
X 

V1=<A*   Yfi    +Be    lB    + Ce        U   + De     U   )e^ (1-la) 

-yBx + y,-,x + vTTx -YTTx 
V2 = (-Ae     B -Be        B    +  Ce        U   + De     U  )eJwt (1-lb) 

where. A and D represent the complex amplitudes of the incident balanced and 

unbalanced waves, respectively, and B and C the reflected balanced and un- 

balanced waves, respectively.     Yp> *s tne balanced propagation constant, and 

•yTT the unbalanced.    The complex amplitude coefficients are formally related 

at the generator and load terminals by generalized reflection coefficients as 

described in the previous section; and when these relations are incorporated 

into the above set of voltage equations, the voltages are uniquely determined 

at each point aloig the line.    Conversely, a given voltage distribution uniquely 

determines the terminating reflection coefficients; this is the usual measure- 

ment problem -- determination of the terminating impedances from the 

measured voltage distributions. 

To date, the most accurate means of impedance measurement on long 

ransmission lines has been by examining the voltage (or current) standing- 

wave distribution using a sampling technique.    The usual quantities actually 

measured are the standing-wave ratio,  p, and the position of the standing- 

wave minimum with respect to the terminal plane of the impedance being 

measured.    On the shielded two-wire line, it is convenient to measure these 

same quantities on each of the lines independently.    However, an examination 

of Eqs.  (1-1)  will show that there are essentially eight independent quantities, 

corresponding to the amplitude and phase of each of the four complex coeffi- 

cients.    Inasmuch as the determination of relative values only i3 necessaryfor 

impedance calculations, one of these coefficients   may be considered arbitrary. 

t 
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The measurement of the other three is then necessary for determining the 

three independent, complex reflection coefficients of the termination; tVus 

cannot be accomplished by measurement of the two standing-wave   ratios 

and positions alone.    One alternative is to include a measurement of rela- 

tive time phase, which is generally considered difficult.     Another alterna- 

tive is to eliminate one of the component waves during a particular measure- 

ment; this can be done to one of the incident waves only, as the reflected 

waves will be produced by the unknown termination itself.    If the generator 

excites   only one mode, and if the reflected wave in the second mode is 

completely absorbed, there will be no incident wave in the second mode. 

Tomiyasu [ 1]  has  shown how to eliminate the unbalanced incident wave in 

this manner, and gives curves for the calculation ofrRR andf"'   _ from the 

resulting measurements.    In order to determinef\TTT andPRn, a second 

similar set of measurements has to be made, with the balanced incident 

wave eliminated. 

C.  Reflection Coefficients of Simple Terminating Networks 

The possibility of representing a generalized termination of a shielded 

two-wire line in terms of a two-terminal-pair network connecting the two 

modes has just been discussed; furthermore, a/w two- terminal -pair network 

can be represented at a given frequency by a simple three-element tee or 

pi-network, with perhaps an ideal isolation transformer.    It is the purpose 

of this section to develop the relationship between the elements of both a 

tee and a pi-terminating network and the elements of the generalized re- 

flection coefficient matrix. 

Simple tee and pi terminating networks fcr a shielded two-wire line 

are shown in Fig.   1-1; the  shield constitutes the common gruund connection, 

and the voltages are specified relative to the shield.    Assumed positive di^-ec 

tions of currents are as  shown. 

In the general expressions (1-1) for the voltages on the two wires, the 

identification of the terms A and D as incident or forward-propagating waves 

implies that the distance x is measured in a positive direction away from the 

generator.    T"R zero reference point for x is, however, quite arbitrary; and 

in order to avoid unnecessary complication in the present development, let 
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(a) (b) 

FIG.   I-I      TEE   AND  Pi   TERMINATING   NETWORKS 

w 

w = 0.9" 

b = 0.4!! 

D = 0.5" 

a . _L " 
16 

FIG.   1-2  TRANSMISSION   LINE CROSS-SECT ION 
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this zero reference point for x be defined as the terminals of the terminating 

network.    At this point, Eqs.   (1-1) reduce to: 

V^O) =A+B + C+D (1-lc) 

V2(0) =- A - B + C + D (1-ld) 

where the time dependence is implicit.    The current equations can be 

obtained from (1-1) with the use of the relationship Iz =IyZ   =-dV/dx, where 

Z^ is the characteristic impedance of the particular mode.     These become: 

r 
IZ   , 
L    cB 

(Ae 
VBx 

-Be + -^— (-Ce + De ) 
~cU 

h = ^-(-Ae-^x^Yu 
LZcB 

* B.   'B*)  +_i_(_C, 
""cU 

*u> + De VUX- 

Jwt 

jut 

and at the terminals of the terminating network, these are: 

(1-2) 

I(0) =  A^B   + .^KD 
1 cB cU 

12(0) 
•A + B   {   -C+D 

'cB 'cU 

(l-2a) 

The characteristic impedance defined here for each mode is the ratio of the 

voltage of that mode on one wire, with respect to the shield, to the current 

of that mode in one wire.    This definition is desirable in the present develop- 

ment for the sake of symmetry; it differs, however, from the conventional 

definition in the next section by a factor of two,  since those definitions are 

made in terms of the voltage difference between wires for the balanced mode, 

and the total current in both wires for the unbalanced mode. 

The generalized reflection coefficients may be defined in terms of the 

voltage equations (1-1), subject to certain conditions, as follows: 

r 

r 

_ (B) 

^'(^0 = 0 

_ (C) 

r     _ (c) 1 uu   JDY 

f _(B) 
BU    (BT A = 0 

(1-3) 
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1.    Tee Network 

The following general relations may be written for the tee network of 

Fig.   1-la: 

Vl »I1(Z1 + Z3)+I2Z3 
V

2 = I1Z3 + I2(Z2 + Z3)        (1"4) 

Expressing the voltages and currents in terms of the component waves from 

(1-lc), (1-ld), and (l-2a), these become: 

(     cB cU}      l 3        (ZcB     ZcU'      3 

C  + D       A      B - (A"B f  D~C>   Z     + (B'A   t D'C? fZ     + Z1 

Setting D = 0, and eliminating B and C in turn gives: 

rBB =5 • { [<Z1  - ZcB"Z2 + 2Z3 + ZcU» + (Z2 " ZcB"Zl + iZ3 * Zcu)] 

_ C       "cU<Zl-Z2> ""6a) 

1 UB     A" A (l-6b) 

where A = ^ + ZcB)(Z2 + 2Z3 + ZcU)   + (Z., + Z^MZj + 2Z3 + Z^) 

Setting A = 0 in (1-5) gives: 

rUU = % = I [<Z1 + 2r3 " ZcuHZ2 + ZcB-' + <Z2 + 2Z3 " ZcU)(Zl + ZcB)] 

B        2ZcB(ZrZ2> (1"6c) 

^BU      D 
(l-6d) 

It is interesting to note that the normalized cross-coupling coefficients 

are equal, that is: 

rUB   rBU     
2<zi - zz» 

-*z= *s= —s— '  ' 
Furthermore, for a symmetrical tee {Z.  = Z^),  T~^jR = T^nvj ~ ^> 

t 
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and: 

Z,   - Z   _ Z,  + 2Z,  - Z   TT 

-n     -    1     _cB r-      -    1     ,   3       cU a M 1 BB      Z.  + Z   _ 'UU"Z.  + 2Z. + Z   TT 
l     °' 

1 cB 1 3        cU 

which are just the usual relationships between reflection coefficients and 

terminating impedances for a single mode. 

2.    Pi-Network 

The following relations may be written for the pi-network of Fig.   1-lb: 

XlsVlYl r2 = VZY2 ^-^l"^^ 

(1-9) 

llml\   +I3 hmlZ-  h 

Combining these to eliminate II, IL, and I- gives: 

Ij = VlYl + (Vj   - V2)Y 3 I2 = V2Y2 - (Vj  - V2)Y3 

(1-10) 

Expressing these voltages and currents in terms of component waves, from 

(1-lc), (l-ld): and (l-2a), 

^-^  +5_1^ = YX(A + B + C +D) + 2Y3(A + B) (1-lla) 
cB cU 

—^—- + D£   C   = Y2(C + D - A - B) - 2Y3(A + B) (1-llb) 
cB cU 

Setting D = 0 and A = 0, in turn, and solving as above, 

TBB = 7[(YcU + YlHYcB- Y2-2Y3) + (YcU+ Y2)(YcB-Yr 2Y,)]   (1-12.) 

2Y     (Y     -.Y.) 
FUB

a V L tl-12b) 

rUU  = Z'^YcU - Yi)(YcB + Y2 + 2Y3>   + lYcU  - Y2><YcB + Y' + 2Y3» 

(l-12c) 
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2YcU(Y2 " Yl> 

where A- . (YcU + Y^Y^ + Y, + 2Y 3) + (YcU + Y2)(YcB + Yj + 2Y3). 

Again, 

rUB rBU    Z(Y2-YI) 
YcB~YcU * ( ' 

or, 

TUB   TBU      gy-lj 
"z"— = z—   = ~z Z ~ U -13a) 

cU        cB ^cU   cB A 

And for a symmetrical pi, (Yj = Y,), r"UB = POYI 
= °> and 

Y, - Y,  - 2Y, Y   _. - Y, -1—        _     cB 1 3_ -p        _    cU 1 
1 BB " Y   _ + Y.  + 2Y., ' UU     Y   IT + Y, U-i*l 

cB 1 3 cU 1 

D.    Transmission-Line Constants 

In the conventional development of transmission-line equations, a 

number of quantities are usually introduced which have some physical 

significance and at the same time specify the electrical properties of the 

line.    These quantities are Z   , the characteristic impedance, and -y=Q+jp 

the complex propagation constant, composed of a, the attenuation constant, 

and p, the phase constant.    In order to measure any actual impedances on a 

transmission line, it is necessary to know these constants for the line.    A 

set of such constants may be defined for each mode which propagates on the 

line.    These constants will now be determined for the particular type of line 

vised for the hybrid junction as shown in Fig.   1-2. 

1.    Characteristic Impedance 

The characteristic impedance is defined as the complex ratio of voltage 

to current at any point on a uniform transmission line of infinite length.    Al- 

ternatively, it is that impedance which will terminate a transmission line of 

finite length without reflections.    For a low-loss line, Z    is predominantly 

L 
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real, and will be considered as such here. 

The theoretical determination of Z    is  simplified by making use of the 

fact that for any transverse electromagnetic mode on a perfectly conducting 

transmission line,  the   characteristic impedance Is directly related to the 

capacitance per unit length  by the formula: 

Z      -  J^*   -   J"H«     -   _1_    -     10" M      1 c\ o"Tc      3F   v7    IT (    15) 

where  Z    is given in ohms if C is in farads per meter [ 2] . 

Frankel [ 3]   gives the characteristic impedance of a two-wire line in 

a rectangular shield for the balancedmode only.    His method of calculation 

is based upon a consideration of the electrostatic potential for a set of four 

line charges X. , of alternate polarity, located in cross section  on the real 

axis of the complex w-plane at +a and ±fi.     This potential is given by: 

V =- 2V ln|w  I SLJ  '?   + gl (1-16) w  + a    | w   -   p v ' 

kz 
If the conformal transformation w = e       is made, the four-line charges 

transform into an infinite set in the z-plane, corresponding to the images 

of a two-wire line between parallel conducting planes. 

In order to determine the capacitance per unit length for this con- 

figuration, it is necessary to evaluate the potential on the surface of the 

wires, which are assumed to be perfect conductors of circular cross section. 

It is then necessary to require the radius of the wires to be small com- 

pared to the distance between them and to the distance to any side of the 

shield, for two reasons:   to permit use. of the fact that small circles in the 

z-plane transform into circles in the w-plane; and second, to permit the 

distance from one wire to any point on the surface of the other to be re- 

placed by the distance between centers.    This approximation is equivalent 

to the assumption that the angular charge distribution around the wires is 

uniform.    With these assumptions, the potential between wires is: 

V, -  V, = 4X. In   i~  tanh 5?) (1-17) 
2 1 (r a 2b ) 

U 
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where       X  = charge on each wire per unit length 

b = distance between parallel conducting planes 

D = distance between wires 

a = radius of wires 

The presence of the vertical walls of the shield can be accounted for by 

the method of images, using an infinite series of images extending to ± oo.   The 

contribution of each pair of images to the potential difference between the origi- 

nal wires is found, and a summation taken.    Then using (1-15) and the relation 

\ = C(V-,-V..), Z    for the balanced mode becomes 
d.        I o 

'oB 
120 lnj — tanhl?! - 120 ( ira 2b) 

co 

E 
m=l 

1 + 

In 

sinh irD  -1 
7E~ 

cosh miT w 
"2b~J 

1 - 
sinh irD  -i 

Tb" 
sinh mir w 

2b   -1 

(1-18) 

where w = distance between vertical walls, shown in Fig.   1-2. 

The same procedure can be used to obtain Z for the unbalanced mode, 

the only difference being in the sign of the charges on the wires and images. 

Equation (1-16) for the potential at any point in the w-plane becomes: 

|w - qj | w ~Pl V = - 2 X In | w + a| | w + n 
and the potential of both wires above ground (the shield) is then: 

vi = v2 = 2Xlnr£coth*r) 

(1-19) 

(1-20) 

effect of the images for the vertical walls gives Z   for the unbalanced mode as: 

for the configuration between two parallel conducting planes.   Including the 

the un 

TTD -,2 
cosn 

1 +  
.   , i 

D- 
CO 

Z  _ =301nii£.coth??! +30 
oU (ira 2b) 

l)mln 

cosh 
2b 

sinh mir w 
"Zb~-I 

m=l 1  - 

. irD 
cosh2b 

(1-21) 

cosh 
mir w 

2b   -I 

The transmission line used in this research consists of two 1/8-inch 

U 
' 
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diameter brass wires spaced 1/2 inch apart, enclosed in a standard 3 cm 

waveguide.     The dimensions as  shown in Fig.   1-2 are thus:   w= 0.900"; 

b =  0.400";  D = 0.500";   and a = 0.0625".    With these dimensions, the formulas 

for Z    co:ivci'ge quickly to yield the values: 

Z   _  =  153.852  ohms Z   TT = 40.629 ohms oB oU 

As a check chiefly on the validity of the assumptions involved in the 

foregoing development as applied to the particular case of interest, a numerical 

method is available for the calculation of an approximate value of Z    corre- 

sponding to a particular set of dimensions.     This is known as the Relaxation 

Method, as described by Southweli [ 4] ; it is particularly simple in this case 

because of the rectangular boundaries, but can be applied to more complicated 

boundaries with little difficulty.     The method is used here to obtain a solution 

to Laplace's equation in two dimensions within a bounded region, with the 

value of the electrostatic potential given on the boundaries.    The method consists 

of finding an approximate value for the potential at any point in the region by 

properly averaging the potentials at surrounding points.    A plot is first made 

of the cross section of the transmission line, and a rectangular grid of points 

separated by a distance h is superimposed.     The potential at each point is 

judiciously approximated, and then successively improved by going ove : the 

entire net, replacing the potential at each point by the average of the surrounding 

points, until the change in successive values is within the accuracy desired. 

For points near the bircular boundaries of the wires (whose boundaries do not 

coincide with points of the rectangular net), a modified form is used for aver- 

aging)    weighting each of the  surrounding points according to its distance 

from the point being improved. 

For the line with the dimensions given above, the first approximation 

was made with a point spacing h = 0.10 inch.    Values of potential thus ob- 

tained were used for the first approximation in a second net with h = 0.0 5 

inch, and similarly for a third net with h = 0.025 inch.     For each net, the 

normal derivative of the potential for each net point on the boundary was cal- 

culated, and the total charge on the boundary determined by Simpson's rule 

for integration, from which the capacitance per unit length was calculated. 

The final net (h = 0.025 inch) for both balanced and unbalanced modes is re- 

L 
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produced in Figs.   1-3 and  1-4, respectively, showing a number of equipoten- 

tial lines.    Only one quarter of the cross section is shown because of symmetry. 

The numbers below   each of the net points represent potentials, while those 

The accuracy of the final net can be further improved by extrapolation, 

making use of the fact that the errors involved vary as h   .    Application of 

such a relationship to the results gives th~ following values for Z   : 

Z.oB(ohms) ZoU(ohms) 

First net                                    183.44 45.767 

Second net                                  161.23 41.738 

Third net                                   155.98 40.89 5 

Extrapolated value               154. 27 40.626 

Theoretical value                 153.85 40.629 

By comparison with the theoretical values, it can reasonablv be said 

that extrapolated values are within 0. 1 per cent of the true value. 

2.    Attenuation Constant 

The attenuation constant a is a measure of the power loss per unit 

length along a transmission   line.   For a shielded line, assuming the thick- 

ness of the shield to be large compared to the skin depth, this loss is en- 

tirely due to the resistance of the conductors.    An approximate value of 

this power loss can be obtained as the product of the square of the total 

current flowing and the ohmic resistance of the line per unit length;   an 

exact solution must take into account the non-uniform current distribution 

around the cross section of the transmission line.    A matched line is, of 

course, implied, so that there are no additional losses due to the presence 

of standing waves. 

At 750 megacycles the skin depth in brass is 5. 3- 10      meters, 

or  .00021 inch,which is certainly small compared to the .050-inch wall 

thickness, and to the .0625-inch wire radius; so the surface impedance as 

defined by King [ 5]   is an adequate measure of the resistance per unit length. 
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R«,XS,A|^:    M/^. 750-106- 1.256-IP" 
VZvo'        V 21.2-107 

=   .0157chms 

(1-22) 

The resistance of each element of the line, R., is then inversely proportional 

to its cross-sectional perimeter, or 1. 57 ohms/meter for each wire, and 

0. 238 ohms/meter for the shield. 

The current at each point on the surface of the wires can be determined 

from the potential plots shown in Figs.   1-3 and 1-4 calculated by the relaxation 

method, using the formulas for the surface-current density, K, 

K = n x H 9n E =   £H 
V « 

(1-23) 

The normal derivatives of the potential as given in the above figures, which 
8 6' may be called —— , are related a n 

the net spacing.    Consequently, 

may be called —— , are related to the actual -jr— by a factor 1/h, where h is * 9 n on 

K l    di' 
hi,  an 

The total mean-square current on each conductor is then: 

(1-24) 

1 w ds (1-25) 

where the line integral is . <iken completely around the surface of the con- 

ductor.    A numerical method of integration is used on the results of the 

relaxation calculation of the normal potential derivatives; and a normalizing 

factor N is incorporated to correct for differences between the total current 

on each conductor as found by the relaxation method, and the total current 

which would flow on a matched line with the same applied voltage.    N will be 

the square of the ratio of these two currents.    The attenuation constant is 

then given by. 

1   dp . .       .. a = - 5T5 -j—    nepers per unit length (1-26) 

U 
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where P -" total power delivered to matched load - V   /Z 

dP/dz = power loss per unit length =  /      I . R. 

Table  1-1 gives the results of the attenuation calculations. 

3 .    Phase Constant ft 

The phase constant p is a measure of the phase change per unit length 

on the line.    For a transverse electromagnetic wave, it has the same value 

as in free space, or in a uniform infinite dielectric medium, as given by: 

ft _ _2JT    2-rrf A/S 
3108 

radians per meter (1-27) 

TABLE .1-1 

ATTENUATION CONSTANTS OF SHIELDED TWO-WIRE LINE 

Balanced 

Total I    on each wire 173.33 

Total I on each wire 12. 841 

Total I for matched line, per wire 12.964 

Normalizing factor N 1.0192 

Normalized I    on each wire 176.66 

Total I    on shield 587.60 

Total I on shield 25. 630 

Normalizing factor N 1.0234 

Normalized I    on shield 601.35 

Power loss in wires per meter 556. 16 

Power loss in shield per meter 142.94 

Total power loss per meter 699- 10 

Power delivered to matched load 25,929 

Attenuation constant a . 01348 

a for uniform angular current distribution      .01234 

a for copper wires .00764 

Unbalanced 

157. 28 amp. 2 

12. 188 amp. 

12. 307 amp. 

1.0196 
2 

160. 36 amp. 

705. 66 amp. 

24.439 amp. 

1.0143 

715.75 amp. 2 

504. 84 watts 

170. 13 watts 

674.97 watts 

24, 615 watts 

.01371 neper/m. 

.01261 

.00812 
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II 

SHIELDED TWO-WIRE HYBRID JUNCTION 

A.    General Properties 

The shielded two-wire hybrid junction, which is the basic element of the 

two-wire impedance bridge under investigation, is illustrated schematically 

in Fig.   2-1.    It consists essentially of a main transmission line A-B with a 

pair of series connections C and D and a shunt connection E in the same trans- 

verse plane of the main line A-B.     The two series connections, one in each 

wire of the main line, are necessary to maintain the symmetry of the junction 

for balanced currents on the two wires;   whereas a single series connection 

suffices in a waveguide hybrid junction, since only a single mode will propa- 

gate.    The shunt connection can be made at the same point on the main line 

as the series connections by making the shunt connection to the center of a 

short-circuited quarter-wave stub across each of the series connections. 

A hybrid junction, when properly terminated, has the peculiar properties 

of a class of four-terminal-pair networks known as bi-con jugate networks [6] , 

namely, that of effective isolation or decoupling between both pairs of opposite 

terminals.    Probably the earliest example of such networks was the hybrid 

coil used in telephone repeater stations.    The first UHF model took the form 

of the hybrid ring: or "rat-race" [7] , consisting of a closed transmission- 

line ring or loop with four connections spaced around the circumference such 

that signals launched in opposite directions around the ring from one input 

terminal arrive at the opposite terminal in the proper phase to cancel each 

other.     This cancellation is usually accomplished by making the difference 

in the two path lengths equal to a half-wavelength, so that the entire struc- 

ture is very frequency-sensitive.    Variations of this basic design are possible 

by insertion or removal of pairs of half-wavelength sections of lines, or by 

exchange of shunt connections to the ring for series connections, together 

with a quarter-wavelength change in position.    Particular combinations of 

such changes can produce variations which are physically symmetrical, and 

so not essentially frequency-sensitive.    Coaxial, waveguide, and two-wire line 

models of the hybrid ring hrvve been built successfully.    Other examples of bi- 
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c on jug ate networks are the directional coupler and the waveguide and coaxial 

[ 8]   hybrid junction, or "Magic-Tee. " 

The two-wire hybrid junction described above has the desirable feature 

of being essentially frequency-insensitive, since its properties are based 

chiefly on physical symmetry alone.    The only frequency-sensitive elements 

are the quarter-wave stubs which permit series and shunt connections at the 

same point (without  resorting to such mismatched structures as current loops). 

However, for frequencies from 0.5 to 1.5 times the design frequency, these 

stubs effectively shunt a fairly high reactance across the  series arms, which 

can be matched out if necessary.    The actual construction of the experimental 

model is such that the position of the short-circuiting bar terminating these 

stubs is adjustable (by means of a threaded rod inserted from either end of the 

shunt arm), so that the length of the stubs can be made equal to a quarter-wave- 

length from 200 to 1000 megacycles. 

The bi-conjugate properties of a hybrid junction make it useful as an 

impedance-measuring device.    Power fed into either the series or the shunt 

arm will not appear at the other if identical loads are placed on the two 

symmetrical arm*.    If the two loads are not identical, unequal reflections 

will couple part of the input power into the fourth arm.    In particular, if one 

of the loads is perfectly matched, the output power from the fourth arm will 

be directly proportional to the reflection coefficient of the other load, which 

is one   method  of using the junction for an impedance bridge.    Alternatively, 

if one of the two loads is an adjustable calibrated standard, it can be adjusted 

for zero output from the fourth arm, at which point it must be identical to the 

other load, whose value can then be determined from the calibration.    This 

latter scheme was used for the shielded two-wire impedance bridge.    Because 

of the unique property of this type of line concerning its ability to support two 

modes of propagation, the performance of the shielded  two-wire hybrid junction 

will be investigated in more detail 

B.    Theoretical Analysis 

The completely rigorous analysis of the shielded two-wire hybrid 

junction would require the solution of Maxwell's equations subject to the 

appropriate boundary conditions.    Certain simplifications are possible, how- 
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ever.    First, it can be shown from the relative dimensions that two, and only 

two, modes of propagation are possible on the  shielded two-wir-i. line within 

the desired frequency range (200 to 1000 mc).    Furthermore, assuming per- 

fect conductors, a unique voltage and current for each  mode can be defined 

at each point along a long, uniform section of this line.     This is not true near 

any discontinuities because of the excitation of other modes, which are attenu- 

ated as they travel away from the discontinuity, or alternatively, because of 

coupling to adjacent parts of the circuit which are not continuations   of the 

uniform transmission line.     The usual method of solution in the vicinity of a 

discontinuity is to solve Maxwell's equations by a variational or integral- 

equation method, and match this solution to a uniform-transmission-line type 

of solution at a point some distance away from the discontinuity.     This dis- 

tance  in  the   case    of  a   two-wire line is of the order of ten times the line 

spacing; and if this distance is  small compared with a wavelength, the dis- 

continuity may be  replaced by an equivalent lumped circuit.    Experimental 

verification for the validity of this replacement has been obtained for the 

case of a simple  shunt tee in the two-wire line described above, at 750 mega- 

cycles.    Inasmuch as the hybrid junction is merely a combination of series 

and shunt tees, it seems reasonable to insert such a lumped equivalent  cir- 

cuit in each arm of the junction and analyze the junction completely in terms 

of transmission line circuits. 

Best utilization of the symmetry properties of the junction for use as 

an impedance bridge can be made by connecting the two impedances to be 

compared on the  symmetrical arms of the junction.     Furthermore, because 

there are two series arms, null detectors will be placed on both of these; 

and the single shunt arm will be used for the input.     Thus, referring to 

Fig.   2-1, the input will be at arm E, the two impedances for comparison on 

arms A and B, and the detectors on arms C and D.    Th£ four junction points 

will be numbered as shown on the figure;   and the positive direction of cur- 

rent flow will be taken into the junction from arm E, and away from the 

junction for the others.    The voltage at each junction point will be specified 

with respect to the shield, or ground, terminal.    The following designations 

will be made: 

V     - voltage at the n'th junction point, 

L 
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I    „ = balanced current component at the m'th terminal pair, 

I    n  = unbalanced current component at the m'th terminal pairp 

V _ = balanced voltage component at the m'th terminal pair, 
with respect to ground , 

V .. = unbalanced voltage component at the m'th terminal pair, 
with respect to ground, 

I = current flowing into the m'th terminal pair from the n'th junction mn ° r 

point. 

By the definition of balanced and unbalanced components of voltage and current, 

and from the arieJrttation of the terminals as shown in Fig.   2-1, the following 

definitions may be written: 

VAB=I<V1  -V2> VAU=I<V1+V2> 

VBB = I<V3 - V4> VBU = -2"<V3 + V4> 

VCB=I<V1   "V3> VCU=-kVl+V3> 

VDB = I<V2 " V4> VDU = 7<V2 + V4> 

W-i^Al  -JA2) JAU = I<JA1 + JA2» 

JBB      2 (IB3  " IB4) XBU      2(IB3 + 1B4) 

(2-1) 

(2-2) 

CB " 2XiCl  " ^3' XCU ~ 2VXC1   r XC3' -^n        -j'^i   ~ ^/-i) •'•r'lT        •>(*•/- i    <" *•(-•*) 

*DB      2(ID2 " JD4* JDU     "2"(ID2 +    ^4* 

!EB      2^ El + *E3 "   *E2 " JE4^ 

1Ell4l1El+IE2+   XE3 + W 
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From the requirements for conservation of current at each junction point, 

the following  relations may be written: 

L 

1=1+1 l=l+l 
El        Al r   Cl E2       A2 T   D2 

*E3      JB3 + ZC3 IE4     *B4 + *D4 

(2-3) 

Because of the quarter-wave stub in each E-terminal line, 

I        = I 1=1 El      *E3 E2        E4 

JEB = JE1 " JE2 !EU ~ *E1 + *E2 (2_4) 

It is now desired to solve the above equations for the detector voltages 

and/or currents (V„, V_, I_, and I_) in terms of the driving currents I,-,^ and 

I        and the impedances connected to the various arms.    In general, these im- 

pedances will have to be expressed in terms of impedance, admittance, or re- 

flection-coefficient matrices, relating both balanced and unbalanced components 

of voltage and current, as outlined in Chapter I.    This generality will greatly 

complicate the  solution; and inasmuch as impedances of interest are usually 

symmetrical, this solution will be restricted to the c-se of no coupling between 

modes in the terminating impedances  -- i.e. ,    PRIT  =   T\TR 
= 0-    ^ these im- 

pedances are specified with respect to a reference plane at the actual junction 

points, and include the effects of the equivalent lumped circuit of the junction as 

described above, the following relations may be written: 

I = Y        V I = Y        V 
A3 AB    AB AU AU    AU 

I=YV I = Y        V 
BB BB    BB BU BUvBU,etc. 

(2-5) 

The solution can be carried out in two steps, one with L,      = 0 and the 

other with !„.. = 0, and the two combined according to the law of superposition. 

1.    For the case with I_,_ = 0, from (2-4), 

JE1  = !E2 _IE3 =IE4 =_f- (2-6) 
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and from (2-3), 
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TA1+IC1      JA2+ID2     !B3 + JC3      *B4 + JD4      2 JEU 
(2-7) 

I.  and IR can then be eliminated from (2-2) to give: 

I        = Y       V        - — (J        -I      ) = — (I        -I      ) 
AB AB    AB      2 K Al        A2'      2 v D2       Cl' 

JAU      YAU VAU      2 (IA1 + JA2*      2 '!EU " IC 1  " 1D2) C2-8) 

XBB " YBBVBB ~ 2 ^B3 " *B4*      2 ^D4 " XC3* 

JBU      YBU VBU ~ 2 (IB3 + !B4*      2 (IEU  " JC3 " JD4* 

But from (2-1), 

V    = V        + V vl CB CU 

V     = V - V 
3      VCU CB 

v    = V        + V 
2      VDB DU 

v    - V        - V v4      VDU       VDB 

(2-9) 

And from (2-2), 

*C1  = JCB   + XCU 

*C3 " ICTI " ICB 

lUZ     ^B + XDU 

*D4      JDTJ " ^B 

(2-10) 

Combining (2-1)   and (2-9), 

VAB ~ 2 *V1      V2J      2 *VCB + VCU " VDB " ^U* 

V = — IV    + V   ) - — (V +V +V + v       ) 
AU      2 *    1 2'      2 v    CB T VCU DB T    DIT 

VBB = 2 (V3      V4*      2 *VCU " VCB " VDU + VDB* 
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VBU      2(V3 + V4)      2 (VCU " VCB + VDU  " V
DB' 

And combining (2-8) and (2-10), 

VABYAB = 2 (IDB + JDU " 'cB " ICU) 

VAUYAU = 2 (IEU " :CB " !CU " *DB " ^U*     (2-12) 

V  Y   - — (I   -I   -I   +1  ) BB BB  2 v DU   DB   CU   CB' 

VBU* BU = 2 (IEU " ICU + XCB " JDU + ^B* 

Then using (2-5) in (2-11) and (2-12) and combining 

VCB<YAB+ YC3> + VCU*YAB + YCU>  " VDB^YAB + YDB> " VDu'YAB + YDU) = ° 

VCB(YAU+YCB* + VCU(YAU+YCU> + VDB(YAU + YDB) + VDU(YAU + YDUJ = *EU 

" VCB<YBB + YCB> + VCU<YBB ^CU1+V
DB'

Y
BB 

+ YDB> " VDU<YBB + YDU> = ° 

"
V

CB
(Y

BU
+Y

CB' 
+ VCU(YBU+YCU^ "  VDB(YBU+YDB)+VDU(YT?U 4YDU)=tu 

(2-13) 

Equations (2-13) represent four equations relating the four voltages, 

and may be  solved  simultaneously by the determinant method.     The deter- 

minant of the  set may be evaluated by expansion in terms of its minors, 

and becomes: 

A= 2(YAB " YBB)(YAU " YBU)(YCB " YDB)(YCU " YDUJ 

- (U + DB,DU)(B + CB.CU) - (U + CU.DB)(B + CB.DU) 

-(U + CB,DU)(B + CU.DB) - (U + CB,CU)(B i- DB.DU) 

(2-14) 

where the factors in parentheses are defined as follows 
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(B + P,Q) = (YAB + Yp)(YBB + Y Q) +(YAB + YQ)(YBB + Yp) 

= 2YABYBB + 2YPYQ + <YAB + YBB«YP + YQ> 

(U + P,Q) = (YAU + Yp)(YBU + YQ) + (YAU + YQ)(YBU + Yp) 

2YAUYBU + 2YPYQ + (YAU + YBU><YP + Y Q> 

The solution for the four detector voltages becomes: 

(2-15) 

r - _EU 
CB "    A 

(YAU - YBU)[(B + DB.CU) + (B + DB.DU)} 

" <YAB " Y3B> (YCU " YDU><YAU + YBU + 2YPB) 

(2-l6a) 

r _ _£H 
CU A 

<YAB - YBB)(YAU      YBUHYCB " YDB> " <B + DB'DU>* 

<YAU + YBU + 2YCB> ' <B + CB'DU>(YAU + YBU + 2YDB> 

V EU 
DB        A 

(YATT - YnTTH(B + CB.CU) + (B + CB AU BU '? ,DU)j 

+ <YAB " YBB><YCU  " YDU><YAU + YBU + 2YCB> 

(2-16i>) 

(2-l6c) 

EU 
DU A 

(YAB " YBB)(YAU  " YBU>'YCB " YDB> + (B + CU'DB) x 

<YAU + Y3U + 2YCB} + (B + CU'CB'<YAU + YBU + 2YDB>_ 

(2-lfcd) 

2.    For the case with I~TT = 0, from (2-4) 
h. U 

El !E2      JE3 E4 2 

and from (2-3) 

(2-17) 

!A1 +IC1      " XA2 " ZD2      XB3 + *C3    _IB4 " *D4 ~   2 JEB (2-18) 

I.     and I„    are then eliminated from (2-2) to give: 
An Bn '       e 
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T =Y       V = — (I -I +T\ XAB      !AB   AB      2 l EB        Cl        D2' 

*AU     YAUVAU =  " 2 ^Ci + *D2* 
(2-1?) 

XBB = YBBVBB     I(IEB" XC3 " ID4) 

i 
T =Y       V = - - (I        +1      ) 
BU BU   BU 2 v C3 D4; 

Using (2-9), (2-10), (2-il), and (2-5) to eliminate the desired quantities 

gives another set of four equations relating the detector voltages, as follows: 

VCB<YAB+ YCB> +VCU<YAB + YCU) " VDB<YAB + YDB> ' VDU(YAB + YDU> = ^B 

VCB<YAU + YCB> + VCU<YAU + YCU> + VDB(YAU + YDB> + VDU<YAU + YDU> = ° 

-VCB(YBB   + YCB> + VCU<YBB + YCU> + VDB<YBB + YDB» " VDU<YBB + YDU> =1£B 

-VCB(YBU + YCB> + VCl/YBU + YCU) " V DB(YBU + YDB)+ VDU(YBU +YDU» = ° 

(2-20) 

The determinant of these equations is the  same as for the first set, 

given by (2-14), and the solution becomes: 

v     =*E£ 
CB A 

(YAB " YBB) {(U + DB'CU>   ;(U +DB.DU)} 

"(YAU " YBU) (YCU " YDU)(YAB + YBB + 2YDB) 

(2-2ia) 

'EB 
CU        A 

<YAB - YBB><YAU  - YBU)(YCB " YDB» " (U + DD'DU) X 

<YAB + YBB + 2YCB> " {U + CB'DU><YAB + YBB + 2YDB> 

-I 
EB 

DB 

(YAB " YBB) {(U   + CB>CU) + (U + CB ,DU)} 

+ <YAU " YBU><YCU " YDU><YAB + YBB + 2YCB> 

(2-21b) 

(2-21c) 
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XE B 
DU 

< YAB  " Y3B)(YAU " YBU><YCB " YDB» + (U + CU'DB>* 

< YAB + YBB + 2YCB> + (U + CU'CB*YAB + YBB + 2YDB> 

(2-21d) 

By the theory of superposition, the total voltage at each of the detectors 

at C and D is the sum of the components given by (2-16) and (2-21). 

The behavior of the denominator can be determined by expanjion of 

(2-14)   into the following: 

4*YABYAUYBBYBU + YCBYCUYDBYDu' 

+<YAB + YAU+YBB+YBU>{YCBYCU(YDB+YDl^ + YDBYDl/YCB + YCu} 

+<YCB+YCU+YDB+YD^(YABYAU<YBB+YBu)+YBBYBliYAB+YAu)} 

A = + (YABYBB +YAUYBU)(YCBYGU + YCB YDU+YDBYCU +YDBYDU) 

+ (YABYBU + YBBYAU)(YCBYCU + YC3YDB + YCUYDU +YDBYDU 

"^YABYAU + YBBYBU)tYCBYDB + YCBYDU + YDBYCU * YDBYDu' 

(2-22) 

which is seen to be a very well-behaved function with no apparent singular'- 

ties. 

A particular case of interest occurs when the admittances of the two 

detectors are  identical , i.e. ,   Y_B = Y„_ and Ycu = YDU-    For this    ase, 

the detector voltages are: 

VCB =~^(YAU - YBU)(B + CB'CU> +-I5 <YAB " YBB)(U + CB'CU) 

(Y
AU " YBU) .        (YAB - YBB> 

EU  (U + CB.CU) EB (B + CB.CU) 
(2-23a) 
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rcu = ~!p <YAU+YBU+ 2YCB)(B +CB-CU>-^YAB +YBB + 2 YCB><U +CB>CLJ> 

.    (
Y

AU+
Y

BU+
2Y

CB> 
"TEU    (U + CB.CU) EB     (B + CB.CU) (2-23b) 

DB ^<YAU-YBU><B + CB'CU> 

21 
EB 

<YAB " YBB)(U + CB'CU) 

T        (YAU " YBU*      .        (YAB ,.k_ 
EU (U"> CB.CU)   "    £B(B + CB.CU ) 

-YBB} 
(2-23c) 

-21 EU , 21 

DU = -^i-(YAU+YBU+2YCB)(B + CB,CU)+- EB 
(YAB+YBB+2YCB)(U + CBCU) 

(Y AU + YBU+2YC] 
'EU      (U + CB.CU) 

+ I ^AB^BB+^CB*' 
EB     (B+CB.CU) (2-23d) 

An examination of equations (2-23) leads to the following conclusions 

concerning operation of the shielded two-wire hybrid junction as an impedance 

bridge: 

(1)    The balanced components of detector voltage, V^^ and Vnn, do 

exhibit nulls when the load admittances YA  and Y„ are identical.    Further- A B 
more, for balanced input currents I^o. this null    a dependent only on the 

identity of the balanced components of load admittances, Y.R and Y^,-,;   and 

Lor unbalanced input currents, the null is dependent only on identity of un- 

balanced load components, Y... and Y„,y    If interest is centered chiefly in 

measurement of balanced components of admittance, an effort should be made 

to provide only balanced input current".    This is particularly true if the ad- 

justable standard admittance does not permit independent adjustment of  its 

balanced and unbalanced components.    It should also be noticed that the phase 

of the balanced detector voltages is the same for contributions from unbalanced 

input,currents, but opposite for balanced input currents; this fact may be of use 

in differentiating against the effects of .unbalanced input currents. 

L 
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(2) It is apparent that the unbalanced components of detector voltage 

do not exhibit a null for identical load impedances, and in fact would dis- 

appear only for a very special combination of both balanced and unbalanced 

inputs.    Consequently, if the above null property is to be made use ofs de- 

tectors must be used which respond only to balanced voltages, and differentiate 

very sharply against unbalanced components in order to indicate a null of the 

balanced components. 

(3) Finally, the conditions imposed on the solution (2-23) should be re- 

viewed.    These are that the detector admittances be identical, including both 

balanced and unbalanced components.    Thic places certain restrictions on the 

detectc rs themselves, as well as any combining network incorporated to take 

advantage of the relative phase of the voltage components.    In general, it 

would also be advantageous to terminate both modes at the detectors in some- 

thing approaching their characteristic impedances, in order to reduce reflec- 

tions and standing waves in the detector arms of the hybrid junction. 

The only other outstanding assumption involved is that the loads do not 

couple modes; even if this is not trues qualitative aspects of the performance of 

the hybrid junction may still be obtained from Eqs .  (2-23). 
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